0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 454 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 127 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 91 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 88 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 313 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 69 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^1)
norm(nil) → 0
norm(g(x, y)) → s(norm(x))
f(x, nil) → g(nil, x)
f(x, g(y, z)) → g(f(x, y), z)
rem(nil, y) → nil
rem(g(x, y), 0) → g(x, y)
rem(g(x, y), s(z)) → rem(x, z)
norm(nil) → 0 [1]
norm(g(x, y)) → s(norm(x)) [1]
f(x, nil) → g(nil, x) [1]
f(x, g(y, z)) → g(f(x, y), z) [1]
rem(nil, y) → nil [1]
rem(g(x, y), 0) → g(x, y) [1]
rem(g(x, y), s(z)) → rem(x, z) [1]
norm(nil) → 0 [1]
norm(g(x, y)) → s(norm(x)) [1]
f(x, nil) → g(nil, x) [1]
f(x, g(y, z)) → g(f(x, y), z) [1]
rem(nil, y) → nil [1]
rem(g(x, y), 0) → g(x, y) [1]
rem(g(x, y), s(z)) → rem(x, z) [1]
norm :: nil:g → 0:s nil :: nil:g 0 :: 0:s g :: nil:g → a → nil:g s :: 0:s → 0:s f :: a → nil:g → nil:g rem :: nil:g → 0:s → nil:g |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
norm
f
rem
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
nil => 0
0 => 0
const => 0
f(z', z'') -{ 1 }→ 1 + f(x, y) + z :|: z >= 0, z' = x, x >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + x :|: z'' = 0, z' = x, x >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ rem(x, z) :|: z >= 0, z' = 1 + x + y, x >= 0, y >= 0, z'' = 1 + z
rem(z', z'') -{ 1 }→ 0 :|: z'' = y, y >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
{ rem } { norm } { f } |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: ?, size: O(n1) [z'] |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ rem(x, z'' - 1) :|: z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: O(n1) [1 + z''], size: O(n1) [z'] |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1 * x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: O(n1) [1 + z''], size: O(n1) [z'] |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1 * x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: O(n1) [1 + z''], size: O(n1) [z'] norm: runtime: ?, size: O(n1) [z'] |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 1 }→ 1 + norm(x) :|: z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1 * x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: O(n1) [1 + z''], size: O(n1) [z'] norm: runtime: O(n1) [1 + z'], size: O(n1) [z'] |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 2 + x }→ 1 + s' :|: s' >= 0, s' <= 1 * x, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1 * x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: O(n1) [1 + z''], size: O(n1) [z'] norm: runtime: O(n1) [1 + z'], size: O(n1) [z'] |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 2 + x }→ 1 + s' :|: s' >= 0, s' <= 1 * x, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1 * x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: O(n1) [1 + z''], size: O(n1) [z'] norm: runtime: O(n1) [1 + z'], size: O(n1) [z'] f: runtime: ?, size: O(n1) [1 + z' + z''] |
f(z', z'') -{ 1 }→ 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
f(z', z'') -{ 1 }→ 1 + 0 + z' :|: z'' = 0, z' >= 0
norm(z') -{ 1 }→ 0 :|: z' = 0
norm(z') -{ 2 + x }→ 1 + s' :|: s' >= 0, s' <= 1 * x, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 + z'' }→ s :|: s >= 0, s <= 1 * x, z'' - 1 >= 0, z' = 1 + x + y, x >= 0, y >= 0
rem(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
rem(z', z'') -{ 1 }→ 1 + x + y :|: z'' = 0, z' = 1 + x + y, x >= 0, y >= 0
rem: runtime: O(n1) [1 + z''], size: O(n1) [z'] norm: runtime: O(n1) [1 + z'], size: O(n1) [z'] f: runtime: O(n1) [1 + z''], size: O(n1) [1 + z' + z''] |